
PH : 80026-7683(96)00065-0

ff) Pergamon
Int. J. Solids Struclures Vol. 34, No. 10, pp. 1255-1281, 1997

1997 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0020-7683/97 $17.00 + .00

STRESS TRANSFER INTO A FRAGMENTED,
ANISOTROPIC FIBER THROUGH AN

IMPERFECT INTERFACE

JOHN A. NAIRN and YUNG CHING LIU
Material Science and Engineering, University of Utah, 304 EMRO Building, Salt Lake City,

Utah 84112, U.S.A.

(Received 9 September 1995; in revised[orm 3 April 1996)

Abstract-A new analysis for stress transfer from the matrix to a fragmented fiber through an
imperfect interface was derived using a Bessel-Fourier series stress function with some important
additional polynomial terms. The solution satisfies equilibrium and compatibility every place and
satisfies most boundary conditions exactly. The only approximation is that the axial stress in the
fiber at a fiber break is equal to zero in an averaged sense instead of exactly. Two important
advantages of the analysis are that it can handle anisotropic fibers and it can include imperfect
interfaces or interphases. Theoretical predictions of stress transfer were compared to experimental
Raman spectroscopy results. The results agreed well and were used to measure interface properties.
The strain energy was integrated to get total strain energy in a fiber/matrix fragment. It is proposed
that this result will be useful for developing fracture mechanics models of the fragmentation test.
l:g 1997 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

In the single-fiber fragmentation test (Wadsworth and Spilling (1968) ; Fraser et al. (1975);
Drzal et al. (l983a, b); Bascom and Jensen (1986); Bascom et al. (1991); Wagner et al.
(1993», a single fiber is embedded in a large amount of matrix and the specimen is loaded
in tension until the fiber fragments. At the fiber breaks, the stress in the fiber is zero. As a
function of position away from the break stress transfers back into the fiber from the matrix
and across the fiber/matrix interface. The fiber fragmentation process is influenced by
the efficiency of this stress transfer. The goal of the fragmentation test is to follow the
fragmentation process and to use that information to extract information about interfacial
properties.

For help in interpreting fragmentation test results, we have derived a new analysis for
stress transfer into a fragmented fiber. The problem analyzed is illustrated in Fig. 1. Region
R 1is an anisotropic fiber fragment. It has a circular cross section of radius rl and a length
of I. Region R2 is an infinite, isotropic matrix. The matrix extends from r = r, to r = Cf)

and has a length I. The boundary conditions on the fiber and matrix are

(Jzz,l(r,z = ±1/2) = 'rz.l(r,z = ±1/2) = 'rz,2(r,z = ±1/2) = 0 (I)

(2)

where subscripts" I" and "2" refer to the fiber and matrix, respectively. The fiber axial and
shear stresses, (Jzz.I and 'rz,j, are zero at the fragment ends because the fiber is fragmented
and the ends are the fracture surface. The matrix shear stresses, ',z.2' are zero and the matrix
displacement, w2, is constant or is independent of r. These matrix boundary conditions are
required to maintain compatibility of the stress state in one fragment with that of the
adjacent fragment in the specimen. The constant matrix displacement is determined by the
net strain on the infinite matrix. For the uniaxial loading used in fragmentation tests, the
net strain is simply calculated from the applied stress, (Jo, the temperature differential,
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Fig. I. A cross section of a single fiber fragment of length I and radius r, embedded in an infinite
amount of matrix. The boundary conditions are indicated on the figure and described in the text of
the paper. (Note the 0'0 is the far-field matrix axial stress; the matrix axial stress at ±1/2 is a function

of r and a result of the analysis).

T = Ts - To where T, is the specimen temperature and To is the stress-free temperature, and
the modulus, Em' and thermal expansion coefficient, exn" of the matrix.

Many prior analyses of stress transfer assume a perfect interface between the fiber and
the matrix (Muki and Sternberg (1969, 1970, 1971) ; Fowler and Sinclair (1978); Rajapakse
and Shah (1987); Pak (1989); Pak and Gobert (1993); Slaughter and Sanders (1991);
Nairn (1992); Kurtz and Pagano (1991)). Such analyses, however, are pointless when the
goal is to extract information about the interface. The process of interpreting fragmentation
results can be described as solving an inverse problem. We observe the fragmentation
process and attempt to deduce the input interfacial properties that led to those results.
Clearly the stress analysis must include input interfacial properties. We included interfacial
properties by using a simple imperfect interface model. At a perfect interface, all dis
placements must be continuous between the fiber and the matrix. For an imperfect interface
we relaxed that requirement and allowed the displacements to be discontinuous. The
magnitude of the discontinuities were assumed to be proportional to the magnitude of the
interfacial stresses. The proportionality constants are the interfacial properties that influence
the stress transfer process. Similar imperfect interface models have often been used to
model imperfect interfaces (Martin (1992)). Hashin has specifically used displacement
discontinuities to model the effect of the interface on the mechanical; properties of a
laminate (Hashin (1990) ; Hashin (1990)).

We thus considered the problem of stress transfer from a matrix to a fiber across an
imperfect interface. There is a long literature of one-dimensional or shear-lag methods for
studying stress transfer that originate with Cox (1952). Although these methods are still
used today, one-dimensional models are not capable of giving explicit results about stress
transfer. First, they always contain a "shear-lag" parameter which is unknown and which,
in essence, determines the stress transfer rate. Second, they give no information on the
radial terms in the stress state. Thus, when necessary, one-dimensional models must include
assumptions about radial stress or about the radial redistribution of axial stress in the
matrix. If these assumptions are not made correctly (and it is difficult to know how to make
them), the one-dimensional models can be grossly in error (Nairn and Liu (1996)). Since
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1970, many authors have abandoned one-dimensional models and sought three-dimen
sional, axisymmetric analyses for stress transfer from a rod or fiber into an elastic medium
(Muki and Sternberg (1969,1970,1971); Fowler and Sinclair (1978); Rajapakse and Shah
(1987); Pak (1989) ; Pak and Gobert (1993) ; Slaughter and Sanders (1991) ; Nairn (1992) ;
Kurtz and Pagano (1991)). In the composite field, these papers have concentrated on the
single fiber pull-out test (Penn and Bowler (1981); Piggot et al. (1985)) where a fiber
partial1y embedded in a matrix resin is pul1ed until it is pulled out of the matrix. In the civil
engineering literature, the mathematical1y identically problem describes load transfer from
a cylindrical foundation or pile into the surrounding earth (Fowler and Sinclair (1978);
Rajapakse and Shah (1987) ; Pak (1989) ; Pak and Gobert (1993)). The first three-dimen
sional, axisymmetric analyses of stress transfer were for the pull-out geometry and were
done by Muki and Sternberg (1969, 1970, 1971). They treated the matrix as a three
dimensional elastic continuum. The fiber was reduced to a fictitious, one-dimensional
reinforcement over the cross section of the actual fiber. Although the Muki and Sternberg
approach has been adopted in many subsequent papers (Fowler and Sinclair (1978);
Rajapakse and Shah (1987) ; Pak (1989) ; Pak and Gobert (1993)), it is not ideal for analysis
of the fragmentation test. First, the boundary conditions of the pull-out test and the
fragmentation test are different. In particular, the surface of the matrix has zero stress in
the pul1-out test while it has constant displacement in the fragmentation test. Second, many
fragmentation tests are done using anisotropic fibers such as carbon fibers. The reduction
of the fiber to a one-dimensional reinforcement precludes the possibility of studying the
effect of fiber anisotropy on the stress transfer process. Third, Muki and Sternberg assumed
a perfect interface. Although an imperfect interface could be introduced into their model,
we claim a more explicit treatment of the interface is warranted. Instead of blurring
the fiber into a one-dimensional fictitious reinforcement, we treated the fiber as a three
dimensional, solid cylinder and modeled an imperfect interface by examining the stress
state at the fiber/matrix interface.

We analyzed stress transfer in the fragmentation test using a stress-function approach
based on a Bessel-Fourier series stress function. Several authors have previously used
Bessel-Fourier series stress functions to solve stress transfer problems (Muki and Sternberg
(1969); Kurtz and Pagano (1991); Parnes (1981)). They dealt with perfect interfaces,
isotropic fibers, and boundary conditions different to the fragmentation test. We have
adapted the Bessel-Fourier series approach to the fragmentation test and included the
effects of an imperfect interface and anisotropic fibers. The Bessel-Fourier series alone
cannot solve the fragmentation test. The key to the solution process is finding additional
stress function terms to handle the boundary conditions. Kurtz and Pagano (1991) sug
gested some additional terms for the pul1-out test. The additional terms appropriate for the
fragmentation test, however, are different. We added some new polynomial terms and
found a stress function that provides a nearly exact solution to the fragmentation problem.
It obeys equilibrium and compatibility every place. It obeys all boundary conditions except
one. The single approximation is that instead of the fiber axial stress being exactly zero at
the fiber break, only the average axial fiber stress is equal to zero. After outlining the
derivation of the stress analysis, the predictions are compared to direct experimental
results of stress transfer done using Raman spectroscopy (Melanitis et al. (l993a)). The
experiments and predictions agree well. Final1y, we anticipate subsequent use of this stress
analysis in fracture mechanics models. We thus evaluated the change in strain energy in a
fiber /matrix fragment due to the presence of the fiber breaks and an imperfect interface.

STRESS ANALYSIS

The stress functions
We analyzed a single fragment from a fragmentation specimen as shown in Fig. 1. As

illustrated in Fig. 2, the problem was partitioned into a far-field problem and a local field
or perturbation problem. The far-field problem, illustrated in Fig. 2B, is for an infinitely
long fiber embedded in an infinite matrix subjected to uniform axial stress and thermal load
T. The boundary conditions for the far-field problem are:
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A. One Fragment B. Far-Field Stresses C. Perturbation Stresses
Fig. 2. The problem for stress transfer into a single fiber fragment (A) can be partitioned into the
far-field stresses (B) and the local field or perturbation stresses (C). The far-field stresses are the
stresses for an infinitely long, unbroken fiber in an infinite matrix under an applied stress for au and
temperature differential of T. The perturbation stresses are the stresses for a fiber fragment loaded
by compression stress of Ijt 00 while the matrix ends are maintained at zero displacement. The notation

"con." means a constant that is independent of r.

(Jzz.2(r,z = ±112) = (Jo

'rz.J(r,z = ±112) = 'rz.2(r,z = ±112) = 0

1((JO )w (r z = +112) = w (r z = +112) = + - - + IX T .J, - 2, - - 2 Em m

(3)

(4)

(5)

Realizing that the radial stresses at the interface must be continuous, the axisymmetric
stresses for the far-field stresses have the form

(J zz.1 = t/Joo (J", I = (Joo (J88.1 = (Joo !rx,1 =0

d(Jce d(J X)

= O. (6)(Jzz,2 = (Jo (J".2 - (J88,2 = 'rz,2
r

2 r2

By equating axial strains and the interfacial radial displacements, it is easy to show that the
constants t/J 00 and (J X) are

2v~ l-vT I +vm
~------

EA ET Em

(7)
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(8)

The anisotropic fiber is assumed to be transversely isotropic with the axial direction of
symmetry coinciding with the axis of the fiber. The terms EA , E T, vA, VT, IXA, and IXT are the
axial and transverse moduli, Poisson's ratios, and thermal expansion coefficients of the
fiber. The matrix is assumed to be isotropic. The terms Em, Vm, andlXm are the modulus,
Poisson's ratio, and thermal expansion coefficient of the matrix.

The challenging problem is the one of the perturbation stresses illustrated in Fig. 2C.
The boundary conditions for the perturbation stresses are

O"zz, I (r,z = ±lj2) = -t/JCt) 'rz,l(r,z = ±lj2) = 'rz,2(r,z = ±lj2) = 0

w2(r,z=±lj2)=0. (9)

Because the temperature differential was already included in the far-field stresses, T = 0 for
the perturbation stresses. We define (f0,i as the far-field stresses in component i and (fp,i as
the perturbation stresses in component i due to unit compression on the fiber (due to
O"zz,1 (r, Z = ± Ij2) = -1). By superposition, the solution to the stresses in the fragment are
(fi = (fO,i+t/JCt)(fp,i' We need to find (fp,i'

From Lekhnitski (1981), the stresses and displacements for an axisymmetric stress
state in a transversely isotropic fiber can be written as

b-1 02tp
U=-~~-

2GT oroz

where u is radial displacement and the constants are

(10)

(11 )

(12)

(13)

(14)

(15)
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v - VAET(EA -v )
T EA GA A

b=-------

(16)

(17)

(18)

(19)

where GA and G T are the axial and transverse shear moduli. The stress function 'P must
satisfy the equation

(20)

where the operators are defined by

and the constants, Sj and S2, are

o a+c+J(a+c)2 -4d
ST = 2d

2 a+c-J(a+c)2 -4d
S2 = 2d .

(21 )

(22)

(23)

Sj and S2 may be either real or complex; they are never purely imaginary (Lehknitski
(1981)). For an isotropic material, these equations reduce to the well-known result in Love
(1944) :

(24)

(25)

(26)
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where X = 'Pj(l-v) and the equation for X is
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(27)

(28)

(29)

(30)

It is well known that stress functions based on a Bessel-Fourier series can solve
problems for a cylinder under arbitrary lateral loads (Love (1944)). Such functions are
often used for analysis of isotropic materials, but they can also be used for anisotropic
materials provided the material is transversely isotropic with the isotropic plane being
normal to the cylinder axis (Lekhnitski (1981)). We thus begin by writing stress functions
in the fiber and matrix as

where

cr..;

'II = L sink;z(b iil o(f3]ir) +b2Jo(f32;r))
i=l

e.c

X = L sin k;z(ao;Ko(k;r) +aiik;rKj (k;r))
;= I

2irc k;
k; = -/- and f3ji =-.

Sj

(31)

(32)

(33)

The fiber stress function has modified Bessel functions of the first kind (Io(x)) ; the matrix
stress function has modified Bessel functions of the second kind (Ko(x) and Kj(x)). The
fiber has only modified Bessel functions of the first kind, because the second kind diverge
as r approaches 0 ; the matrix has only modified Bessel functions of the second kind because
the first kind diverge as r approaches 00. The Fourier series includes only sink;z terms due
to symmetry about z = O.

Substituting the fiber stress function in eqn (12), the axial stress in the fiber is

(34)

This result is insufficiently general to solve the fragmentation problem. It expands the axial
stress in a Fourier series. It correctly includes only cosk;z terms because the axial stress is
an even function of z. But, it does not have a constant term or a Fourier term for i = O. To
correct this deficiency of the Bessel-Fourier series stress function, we must superpose it with
some additional stress functions. Our goal is to recover the z-independent terms while still
satisfying boundary and symmetry conditions. We looked to the polynomial stress functions
for transversely isotropic materials given in Lekhnitski (1981) :

(35)

First, m must be odd, because even m leads to normal stresses that are odd functions of z
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rather than the required even functions. Among the odd-m functions, 'PI trivially gives zero
stress and 'P7and higher always give non-zero shear stresses at z = ±1/2. We are left with
'P3and 'Ps which have the form

Substituting these stresses into eqn (13), we find zero shear stress at z = ± 1/2 for arbitrary
values of A 30, A 32 and A so, but the remaining constant must be

5d
A S2 = -~Aso·

c
(37)

Combining the polynomial stress functions with the Bessel-Fourier series stress function,
the total perturbation stress function for the fiber becomes

(38)

The situation is similar for the matrix stress function. By using separation of variables,
it is easy to show that

(39)

is a solution to V2¢ = 0 and therefore an acceptable stress function for the matrix. Inserting
¢ in eqns (24)~(29) gives the required z-independent stresses; the stresses are also com
patible with the boundary conditions of the fragmentation problem. Furthermore only the
Al term enters the stresses that result from ¢. We tried other matrix stress functions, but
could not find any that are similarly compatible with the boundary conditions. Combining
the Al term in ¢ with the Bessel-Fourier series stress function, the total perturbation stress
function for the matrix becomes

ex

X = A1zlnr+ L: sinkiz(aoiKo(kir)+alikirKI(kir)).
i=1

(40)

To find stress or displacement in the fiber or matrix, we substitute the fiber or matrix
stress function into the required equation among eqns (lO)~(l5) or eqns (24)-(29). The
strains can be calculated from the stresses. Here we explicitly state only those stresses,
strains, or displacements that are necessary for solving the stress transfer problem~the

axial, shear, and radial stresses, the axial strain, and the axial and radial displacement in
both the fiber and the matrix:

(41)

(42)
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(44)

(45)

CD

(Jzz,2 = L cos ki([aoiKo(kiO +ali(ki~Kl (ki~) - 2(2-vm)Ko(k;())] (47)
i=1

YJ

T rz,2 = L sink;([aOi(-Kl(ki~))+ali(2(l-vm)Kl(ki~)-ki~Ko(k;m] (48)
i=1

(49)
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(52)

In deriving these results we additionally transformed to a dimensionless coordinate system
with ~ = 1'/1'1 and ( = z/r J • This change required a redefinition of k i to be

(53)

where P = 1/(21',) is the aspect ratio of the fragment. For simplicity we have defined some
new constants (B I , B2, and B3) to replace the previous constants A 3o , A 32 , and A so • We also
redefined the remaining constants (A], aOh ali' b 1i, and b2 ,) to eliminate some unnecessary
common factors. The total number of undetermined constants is unchanged. Finally, we
note that the displacements Ui and Wi are dimensionless displacements that are normalized
by the fiber radius; for example, U] = ul(actual)/r].

Special mention needs to be made about the Fourier expansion terms in the radial
stress, axial strain, and radial displacement in the fiber. Each of these terms includes two
Bessel-function terms and a third non-Bessel function term involving B3• The non-Bessel
function terms in the Fourier expansion arise from the leading terms in the fiber stress
function. For example, the radial stress due to only the leading terms in the fiber stress
function is

(54)

As discussed above, this radial stress furnishes the desired component that is independent
of (, but it also has a component that varies as (2. Our subsequent analysis will do a term
by-term comparison between two Fourier expansions. For this method to work, both sides
of the equation must be completely resolved into its Fourier terms. For terms involving (2,

we thus introduce the Fourier expansion

(55)

The constant parts are kept with the (-independent parts of the stresses, strains, and
displacement. The Fourier parts are added to the Fourier expansion terms. The non-Bessel
function terms in the Fourier expansion are crucial to the analysis. Without them, the
interface conditions described below would yield only a trivial result of zero perturbation
stress. With them, a useful solution to the stress transfer problem is possible.

In the dimensionless coordinates, the fiber fragment extends from - p to p. Inspection
of the matrix shear stress, the matrix axial displacement, and the fiber shear stress show
that

(56)

Thus the stress state automatically satisfies three of the four boundary conditions in eqn
(9). The remaining boundary condition is (Tzz.] (±p) = -I. Because (Tzz.J(±p) in eqn (41)
is a function of ~, this final boundary condition cannot be satisfied exactly. Instead, we
satisfy it in the average or we satisfy «(Tzz.l(±P) = -1. Integrating (Tzz.] over the cross
section gives the average axial stress in the fiber:

(57)
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We thus replace the O"zz,l(±P) = -I boundary condition with <O"zz,I(±P» = -lor
explicitly with

Unfortunately, the results for isotropic fibers are not a special case of the above results
for anisotropic fibers. The difficulty is that for isotropic fibers SI = S2 = 1 and the two Bessel
function terms become degenerate. The solution is to add a new Bessel function term that
depends on II (k,r) instead of lo(kir) [Love (1944)]. The stress function for isotropic fibers,
complete with leading terms, is

00

+ l: sin k,z(blilo(kir) +b2,kirll (k,r)) (59)
i=1

where vr is the Poisson's ratio of the isotropic fiber. The leading terms are the same as the
leading terms for anisotropic fibers after inserting the special case of isotropic material
properties. Substituting this stress function into eqns (24)-(29), the required results for
isotropic fibers are:

X)

O"zz,1 = B2+ B3~2 + l: cos k,{[boJo(ki() +bJ,(kiUI (ki~) + 2(2 - vf)lo(k,~))l (60)
i= I

00

T,z,J = L sink,([boJI(ki~)+bli(2(1-vf)ll(ki~)+kiUo(ki~))J (61)
i= 1

(62)

(
I 2Vr ) B3 [ , 2vJp

2
] I 00 sin k,([ .8vf

WI =( E
f
B2 - E

r
Bl +2G

r
(I-Vf)~~(+-3~( +2Gfi~l~ B 3(-I)'k;

+boJo(k,~)+bli(k,Ul (k,~) +4(1- vf)lo(ki~))] (63)

(65)
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whcrc Ej and Gf are the Young's and shear moduli of the fiber. The average axial fiber
stress becomes

(66)

Imperfect interface
The stresses, strains, and displacements in the previous section depend on numerous

undetermined constants. Those constants can all be determined by imposing conditions on
the fiber/matrix interface. In analyses that assume a perfect interface, (Jrn rm u, and ware
all continuous at r = r1 or at ~ = 1. The goal of the fragmentation test, however, is to assess
the role of the interface in the stress transfer process. It is self-evident that analyses that
assume a perfect interface will never be helpful in interpreting such tests. Those analyses
predetermine the role of the interface; they include no interface property that can influence
stress transfer. To use stress analysis to study interfaces, we must include some model for
an imperfect interface into the stress analysis.

The mathematician's approach to an imperfect interface is to relax interfacial con
tinuity conditions and allow there to be discontinuities in (Jrn rm U and w (Martin (1992)).
In linear theories, the discontinuities are assumed to be linear functions of the interfacial
stress state. In static loading conditions, stress equilibrium requires (Jrr and rrz to be con
tinuous regardless of the quality of the interface. The remaining discontinuities in U and w
are functions of the interfacial stresses. Rashin put this imperfect interface model into
physical terms for composites (Rashin (1990a, b)). The interface in real composites is better
described as an interface zone of finite dimension or an interphase. Within the interphase,
the mechanical properties differ from both the fiber and the matrix. If the interphase plays
a role in composite properties, then it must allow the fiber to displace relative to the matrix.
Unfortunately, we are unlikely to have detailed information about the thickness or the
mechanical properties of the interphase. To make matters more complex, there might be a
gradient of mechanical properties across the interphase. Adding an interphase zone with
variable and probably unknown mechanical properties severely complicates any analysis.
Rashin proposed collapsing the 3D interphase into a 2D interface (Hashin (1990a, b)). The
effect of the interphase is modeled by allowing displacement discontinuities at the 2D
interface that are linearly related to the stress in each displacement direction. Denoting
interface discontinuities with square brackets (e.g., [u] = U2(1, 0 - Uj (1,0), a fiber interface
reduces to

(67)

(68)

(69)

where Dm D" and D, are called interface parameters. They express the ability of the
interphase to transfer stress. A perfect interface is described by Dn = D, = D/ = 00; a
completely disbonded interface is described by Dn = D, = D, = 0; intermediate values
describe an imperfect interface or a partially debonded interface.

Fortunately, the number of interface parameters required for the fragmentation test
can be reduced. First, the stresses are axisymmetric which implies rre = [v] = 0; we do not
need to consider D/. Second, in the fragmentation test, thermal shrinkage of the matrix and
differential Poisson's contraction between the fiber and the matrix both promote com
pressive radial stresses (Nairn (1992)). Calculation of (Jrr(1, 0 from the above stress analysis
confirms that (Jrr is compressive over the entire interface except for extremely small zones
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near the fiber ends. Under dominantly compressive radial stresses, the expression for [u]
implies a negative discontinuity or implies the matrix penetrates into the fiber. While
negative discontinuities are permissible for tangential displacement, they should be for
bidden for normal displacements. We can prevent negative discontinuities in normal dis
placements by setting Dn = 00. We are not assuming the interface is perfect in the radial
direction; we are just exploiting the fact that (Jrr is compressive and therefore the quality of
the interface in the radial direction should have no effect on fragmentation results. The
remaining interface parameter, D" cannot be eliminated. Thus, we claim the effect of an
imperfect interface on stress transfer in the fragmentation test can be modeled with a single
parameter~D,.

Collapsing the interphase to a 2D interface does not mean we are ignoring the reality
of an interphase. Instead, we are using a mathematical trick that lumps the effect of the
interphase into one interface parameter~Ds' In principle, D" could be calculated for an
interphase if its mechanical properties and dimensions were known. Some sample cal
culations for planar interfaces are given in Martin (1992). For the fragmentation test,
consider a compliant interphase of thickness t; on a fiber. The discontinuity in axial
displacement across the interphase is r,[w] (when w is a dimensionless displacement). A
simple one-dimensional analysis for shear strain in the interphase gives

rl [w]
Yxz,i = -t-'

i

(70)

Substituting the imperfect interface model for [w] and assuming the interphase shear stiffness
is Gi we find a physical interpretation for D, as

(71)

Thus Ds has units of a modulus and is related to the effective shear stiffness of the interphase.
This one-dimensional picture probably oversimplifies the physical meaning of D,. Ds is
better imagined as a measure of the ability of the interphase to transfer stress from the
matrix back into the fiber.

The unknown constants
The conditions available for determining the unknown constants are

(Jrr,] (1, 0 = (Jrr,2 (I , 0 (72)

'rz,] (I, 0 = 'rz,2 (1,0 (73)

[u] = 0 (74)

[w] =
'rz,1 (I, 0

(75)
D,

«(Jzz" (± p) >= - 1. (76)

The first four are the interface conditions; the inclusion of Ds is the effect of the imperfect
interface, The last condition is the average stress on the fiber ends. The axial displacement
discontinuity is more conveniently expressed in terms of axial strains. Using
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(77)

the axial displacement discontinuity condition can be rewritten as

To solve for the unknown constants, we first define some new constants:

(78)

(79)

Introducing these constants into the four interface conditions and equating the cos ki~ terms
for i = 1 to n, where n is the number of Fourier terms, results in n (4 x 4) linear systems for
cu, C2h C3i and C3i- In matrix form the linear systems are

(b-I) II (!3u)
----

s7 2GT!3'i

(b-I) I, (!32J
----

si 2GT !32i

- (2GI - d+;V
Aa)Io(!32J

S2 A A

Ko(kJ+ KltJ
1

2(l-vm )K1(kJ -kiKo(kJ

- (I - 2vm )Ko(kJ +kiK, (kJ

Ko(kJ
---

2Gm

o
4(I+v T)

( _ I) 1 ---'----=-'-

kl
4(l-VT)

(-I)' 2G
T
kl

8v4(I+vT)
(-I)" 0

EAki

(80)

Note that the right-hand side of this equation contains the Fourier terms that resulted from
expanding the (2 terms in the stresses that resulted from the leading terms in the fiber stress
function. Without these terms, the right-hand side would be zero and only the trivial
solution of Cu = C2i = C3i = C4i = 0 would be possible. With them a nonzero solution is
possible. Thus we see the importance of the leading terms in the fiber and matrix stress
functions.

Once cu, C2i, C3;, and C4i are determined, we use the (-independent terms to find Aj, Bj,
B2 , and B 3• We get three equations from the interfacial conditions on radial stress, radial
displacement, and axial strain. The interfacial shear stress condition, however, has no
(-independent terms. The required fourth equation comes from the <azz.l(±P) = -I
condition. In matrix form, the resulting (4 x 4) system is
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-I

Once B3 is known, the remaining constants can be found from hit = B3cjh h2i = B3C2h
aOi = B3C3i, and ali = B3c4i . B3, besides connecting the two matrix equations, has a physical
significance. If the condition in the third row of eqn (81) is substituted into WI (eqn (44))
and evaluated at , = p, we find

(82)

Thus the axial displacement at the end of the fiber or the crack opening displacement is
parabolic in ~ with a magnitude proportional to B3 •

We characterize this solution as an analytical solution. The solution is expressed as a
series of (4 x 4) linear systems. A patient person could do the algebra and find analytical
expressions for all constants in the stress analysis. A more convenient method, however, is
to solve the linear systems on a computer. For n Fourier terms, the solution requires solving
(n+ I) (4 x 4) systems; such a solution can be done rapidly on any personal computer. We
contrast this solution to other stress-transfer solutions which clearly involve numerical
methods such as numerically solving an integro-differential equation (Muki and Sternberg
(970)).

Equations (80) and (81) were derived under the assumption that Sj and S2 are both
real. No difficulties are presented by them being complex, but slightly modified equations
are necessary. When SI and S2 are complex they are complex conjugates or S2 = sf. Likewise,
f3li and f32i are complex conjugates. Inspection of all the fiber stresses and displacements
show that for the stresses and displacements to be real, the constants hit and h2 ; and the
terms associated with those constants must also be complex conjugates. By resolving all
complex terms into their real and imaginary parts, it is a simple matter to write any stress
or displacement in terms of the complex number hI; and the complex term associated with
hit. For example, the axial stress in the fiber becomes

where the Bessel functions are now evaluated with complex arguments. All terms involving
BI, B2, and B3are unaffected by whether SI and S2 are real or complex. To find the real and
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imaginary parts of hi" we must slightly modify eqn (80). Ifwe use Mij to denote the matrix
of constants in eqn (80), the modified equation for complex s, and S2 becomes

0

[2~(M") -2:l(M,]) M l3

M" ]
[~(b")/B,

.4(l+VT)
( -1)'

k 2
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EAk;

After solving this equation, the remaining constants are found from eqn (81). Because of
complex constants, the 4-3 element of the matrix in eqn (81) changes to

Finally, identical methods are used to find the constants for problems with isotropic
fibers. The resulting equations are
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RESULTS AND DISCUSSION

Inl

(87)

Theoretical results
The above stress analysis satisfies all boundary conditions of the fragmentation test

(see Fig. 1) exactly except for the fiber axial stress. Instead of the fiber axial stress being
uniformly zero, it is zero only for net fiber stress. We thus expect the solution to be exact
except for regions very near the fiber break. Our main interest is in stress transfer at the
interface. Because stress transfer into carbon fibers can take 50 fiber diameters (see below),
we expect the stress analysis to be virtually exact over the bulk of that stress transfer zone.
Any inaccuracies will be confined to the first few fiber diameters of stress transfer.

A complete fragmentation specimen is comprised of numerous fragments. A solution
for the entire specimen can be constructed be piecing together solutions for fragments of
different lengths. Formally this solution is correct only for periodic fiber breaks. For
unequal fragment lengths, there will be a discontinuity in the axial stress in the matrix from
one fragment to the next. Thus there is one additional approximation. Despite the axial
stress discontinuity, the net matrix stress will be continuous from fragment to fragment.
Furthermore, the shear stress and displacement continuity conditions between fragments
are correctly satisfied.

The stress-analysis problem in Fig. I can be viewed as a penny-shaped crack that
extends to the boundary between two dissimilar materials. Clearly there should be a stress
singularity at the crack tip, at least in the matrix axial stress. The expected singularity is
not captured in the present stress analysis. It is missed as a consequence of the fiber stress
or the fracture surface being zero in the average instead of uniformly zero. Although there
is no mathematical singularity, the series solution converges towards a singularity. As the
number of Bessel-Fourier terms increases, the axial stress in the matrix at the crack tip
increases. This pseudo-singularity is highly localized at the crack tip. All stresses become
independent of the number or Bessel-Fourier terms at positions more than about two fiber
diameters from the crack tip.

For a sample calculation, we plot stress transfer from a high modulus (HM) carbon
fiber to a room-temperature cured epoxy matrix (see fiber and matrix properties in Table
I). Figure 3 plots the normalized average axial stress in the HM carbon fiber for various
values of D,. For a perfect interface (D, = 00) the stress transfers back into the fiber in
about 30 fiber diameters. As D, decreases, the stress transfer gets slower. As D, approaches
zero, the interfacial shear stress approaches zero, as it should for a completely disbonded
interface. Calculating stresses such as those in Fig. 3 requires including enough terms in the
Fourier series to get convergence. We found that the average tensile stress converged when
the number of terms was on the order of the fragment aspect ratio (p). Other components
of stress can require more terms but typically never more than ~ 4p terms.

Table I. Thermal and mechanical properties used for the fiber and the matrix

Property

Diameter (2r,) (flm)
Tensile Modulus (EA or Em) (OPa)
Transverse Modulus (ET) (OPa)
Axial Shear Modulus (0, or Gm) (OPa)
Axial Poisson's Ratio (v A or vm )

Transverse Poisson's Ratio (v,)
Axial CTE (exAor exm) (lO-6/,C)
Transverse CTE (exT) (lO-orC)

HM Carbon Fibers

7
390

14
20

0.20
0.25

-0.36
18

Epoxy Matrix

2.6

0.97
0.34

40
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Fig. 3. Sample calculation of the effect of an imperfect interface on the average axial tensile stress
in an HM carbon fiber as a function of distance along the fiber for a fiber fragment that is 200 fiber
diameters long. All stresses have been normalized to the far-field axial fiber stress of ljJoo. D, = ex; is
a perfect interface; D, = 0 is a disbonded interface; intermediate D;s (in MPa) are imperfect

interfaces.

The calculated stress transfer rate into a particular matrix is a function of the fiber
mechanical properties and of the imperfect interface parameter, Ds • Most previous analyses
for stress transfer have been for isotropic fibers. To assess the effect of fiber anisotropy, we
considered a series of hypothetical transversely isotropic fibers with mechanical properties

E~ = EA (88)

E'r = ET+f(EA-ET) (89)

, (EA ) (90)GA = GA+f 2(1 +v
A

) -GA

v~ = VA (91)

v'r = vT+f(v A- vT) (92)

(X~ = (XA (93)

rt'r = (XT+f(rtA-rtT) (94)

where EA, ET, GA, VA' VT, rtA, and rtT are the mechanical properties for the HM carbon fiber
listed in Table 1. Asfis varied from 0 to 1, the hypothetical fiber passes smoothly from an
HM carbon fiber to an isotopic fiber with E1= EA, Vf = VA, and rtf = rtA' We found that f
had very little influence on the rate of stress transfer. This result suggests that for carbon
fibers, fiber anisotropy has little effect of stress transfer. The dominant factor in stress
transfer is the ratio of the axial fiber modulus to the matrix modulus. The stress transfer
rate decreases as this ratio increases. Although fiber anisotropy has little effect on the stress
transfer rate, it has a larger effect on other components of stress (e.g., radial stress at the
interface). It is therefore important to include fiber anisotropy when attempting to under
stand interfacial failure mechanisms.
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Fig. 4. Sample calculation of the interfacial shear stress and interfacial octahedral shear stress for
an HM carbon fiber in an epoxy matrix as a function of distance along the fiber for a fiber fragment
that is 200 fiber diameters long. All stresses have been normalized to the far-field axial fiber stress

ofi/J~.

A common interpretation of interfacial damage in fragmentation tests is that it is
caused by interfacial shear stresses. These shear stresses are often estimated using one
dimensional elastic models (Cox (1952)) or elasto-plastic models (Kelly and Tyson (1965)).
These models misrepresent the interfacial shear stress and predict non-zero shear stress at
the fiber ends. In an exact stress analysis, the shear stresses are zero at the fiber end. The
analysis in this paper correctly satisfies that boundary condition. A typical plot of interfacial
shear stress for a perfect interface is shown in Fig. 4. The shear stress is zero at the fiber
break, rapidly reaches a maximum and then decays towards zero. For imperfect interfaces,
the maximum decreases and shifts farther away from the fiber break as D, approaches zero.

The simplistic view of interfacial yielding being caused by interfacial shear stress
coupled with the fact of zero shear stress at the fiber ends implies that shear yielding would
never occur near the fiber break-an implication that is contrary to observation. The
problem with this reasoning is that it ignores the normal stresses. To get a more realistic
picture of yielding we consider octahedral shear stress and a von Mises yield criterion
instead of only shear stress and a shear-yield criterion. Octahedral shear stress is

(95)

As shown in Fig. 4, roct is a maximum at the fiber ends and decreases away from the fiber
ends. Because of normal stresses in the far-field stresses, roc/ does not decay to zero, but to
some nonzero, far-field value. The small oscillations near the fiber break are an artifact of
the fiber break. When we include enough terms in the Fourier series for convergence (4p
terms) over most of the fiber, there often remains a very local region near the fiber break
that has not converged. As the number of terms increases, roct at the fiber end increases.
The exact solution has singularities in the normal stresses at the fiber break. This increase
in roct is a consequence of the Fourier series converging towards the singular stresses. The
influence of the singular stress is very local. We found that roct converges for distances
greater than two fiber diameters from the fiber break.

According to a von Mises yield criterion, the matrix at the interface should yield when
roc/ ~ (J2/3) (Jy where (Jy is the tensile yield stress of the matrix. We claim that roct and the
von Mises yield criterion give a better picture of the tendency towards interfacial yielding
than do models based on shear-lag calculations of interfacial shear stresses. Because of
the fiber-end convergence problems, however, one should be cautioned about drawing
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Fig. 5. A comparison of Raman measurements of stress transfer at an applied strain of 0.4% to
stress analysis predictions. The D, = ex; curve is the prediction for a perfect interface. Setting
D, = 300 MPa gives a more accurate prediction of the stress transfer process. All stresses have been

normalized to the far-field axial fiber stress of i/J x'

conclusions based on calculated 'OCI very close to the fiber break. Likewise, one should
ignore models based on shear-lag or elasto-plastic calculations of the shear stress at the
fiber ends.

Comparison to Raman experiments
Certain Raman bands in carbon fibers shift when the fiber is under stress (Robinson

et al. (1987)). Several investigators have used this shift to directly measure the stress in a
carbon fiber embedded in a matrix (e.g., (Melanitis et al. (1992, 1993a, b); Schadler et al.
(1992)). Here we consider a specific set of experiments on an HM carbon fiber embedded
in a room-temperature cured epoxy (Melanitis et al. (1993a)). The mechanical properties
for the fiber and matrix are given in Table 1. The fibers were embedded in the matrix and
the stress in the fiber as a function of distance from the fiber end was measured at several
levels of applied strain. Details about the experimental procedures are given in Melanitis et
al. (1993a). In this section we compare experimental results for fiber stress and interfacial
shear stress to stress analysis predictions.

Figure 5 compares the Raman measurements of stress transfer at an applied strain of
0.4% to the predictions of the Bessel-Fourier series stress analysis. We began by assuming
a perfect interface. The result in the Ds = CXJ curve shows that the predictions agree reason
ably well with experimental results. The experimental stress transfer, however, is slightly
slower than the predictions. By varying D" we found that D, in the range of 200 MPa to
600 MPa agrees better with experimental results. In Fig. 5, we plot the predicted result for
the geometric mean of200 MPa and 600 MPa or for Ds = 300 MPa. We claim that D, = 300
MPa provides a useful measure of the quality of the interface between HM carbon fibers
and the epoxy matrix.

Figure 6 shows experimental results at an applied strain of 1.0%. The stress transfer
begins slowly, but at about 42 fiber diameters from the end undergoes a discontinuous
change in slope. Comparison to Fig. 3 shows that no single value of D, can predict such a
change in stress transfer rate. Instead, we suggest that the high applied strain has caused a
damaged zone in the vicinity of the fiber end. The damaged zone could be caused by
numerous events such as matrix cracking, matrix yielding, interfacial debonding, or fiber
splitting. Whatever the cause of the damage, we claim its effect is to change the effective
value of D, near the fiber end. We thus propose a two-zone model. Within the damaged
zone, that extends some distance from the fiber end, the interface is characterized by a low



Stress transfer into a fragmented fiber

1.2 .-----.--,--,--.------r---r--,...----.--,---r--.....---.,.-..,

rJl
rJl

~
U5
"0
Q)

.t::!
(ij
E
oz

0.2

100 200
Distance (Fiber Diameters)

Fig. 6. A comparison of Raman measurements of stress transfer at an applied strain of 1.0% to
stress analysis predictions. The predictions are for a two zone model with D, = 5 MPa near the fiber
break and D, = 300 MPa in the central portion of the fiber. All stresses have been normalized to

the far-field axial fiber stress of 1jJ%.
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value of Ds• The stresses are found by analysis of a fragment of axial ratio PI which is equal
to the axial ratio of the entire fragment. In the central portion of the fragment, the D, value
is high. The stresses are found by analyzing a fragment of length P2 where P2 is chosen such
that the average axial fiber stress is continuous at the edge of the damaged zone. The two
zone model is an approximate model because only the average fiber stress is continuous at
the junction between the two zones. All other stresses will be discontinuous. We believe the
two-zone model still provides a useful model for stress transfer in the presence of a damaged
interface.

Figure 6 compares predictions of the two-zone model to experimental results at an
applied strain of 1.0%. The D s value in the center of the fiber represents stress transfer
across an undamaged interface. As such, it should be expected to be the same as the D s

value measured over the entire fiber fragment in low-strain experiments. We thus used
D, = 300 MPa for the central zone. The best-fit D, for the damaged zone was D s = 5 MPa.
Using these two values of D s and a damaged zone size of rd = 42 fiber diameters, the analysis
agrees well with experimental results. In the damaged zone there is more extensive slip at
the interface and a slower rate of stress transfer. This behavior mimics the behavior of
stress transfer by friction, although our analysis is not a Coulomb frictional model.

Using the stress analysis to interpret Raman data allows us to measure D s for the
interface between the fiber and the matrix. From the high-strain data, we determined two
values of Ds-D, in the undamaged zone and Ds in the damaged zone. A common practice
in fragmentation tests is to continue straining until the fiber fragmentation process ceases.
From the average fragment length at the end of the test, the critical fragment length UJ, a
simple elastic-plastic model is used to deduce an interfacial shear strength (Kelly and Tyson
(1965» :

(96)

where (JI.O is the strength of the fiber when tested at a gage length equal to the critical
length. There are two reasons for preferring interpretation of fragmentation tests in terms
of D s over interpretation in terms of 'isS" First, 'is\ has little or no use in predicting properties
of real laminates ; it is merely used to compare interfaces. In contrast, Hashin has developed
models that allow prediction of laminate properties in terms of Ds (Hashin (1990a, b».
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Fig. 7. A comparison of Raman calculations of interfacial shear stress at an applied strain of 0.4%
to stress analysis predictions. The predictions are for D, = 300 MPa over the entire fiber. All stresses

have been normalized to the far-field axial fiber stress of if! 7C'

Thus by measuring D,,, results from single-fiber tests can give predictive results about the
role of the interface in real laminates. Second, Tiss is determined from the highest strain data
and thus is determined mostly by Ds is the damaged zone; T iss is probably unaffected by D s

in the undamaged zone. Among the two Ds values, we claim that D, in the undamaged zone
is the more relevant result. Real laminates never approach fragmentation saturation. To
the extent that the interface plays a role in laminate properties, that role is determined by
stress transfer over undamaged interfaces. The role of the interface is thus best described
by D, in the undamaged zone. D s in the undamaged zone is best determined by low strain
experiments well below saturation. In contrast, Tiss comes from high-strain, saturation
level experiments. These comments cast doubt about the ability of Tiss to give any useful
information about the role of the interface in real laminates.

Raman spectroscopy can be used to indirectly determine interfacial shear stresses. By
integrating the equation of stress equilibrium for axial loading in axisymmetric stress states,
it is easy to show that

(97)

where <<Tn.! >is the average stress in the fiber as a function of z. In Melanitis et al. (1993a),
this equation was used to deduce interfacial shear stresses. In brief, the experimental data
for fiber axial stresses were fit to a cubic spline interpolation and the resulting fit was
differentiated to give shear stresses. The shear stresses are not independent experiments,
but it is still worthwhile comparing the results to calculated shear stresses. Figures 7 and 8
compare the Raman-determined shear stresses to be calculated shear stresses using the best
fit results from Figs 5 and 6. The low-strain results (Fig. 7) agree well. The Raman results
do not show the shear stress dropping to zero at the fiber break because that change is
beyond the resolution of the technique. The high-strain results (Fig. 8) also agree well
except near the break between the two zones at 42 fiber diameters from the end. The
calculated stresses show a discontinuity in shear stresses while the experimental stresses
show a smooth peak. We note, however, that the experimental stresses are determined by
differentiating a spline fit or "smoothed" curve. Thus, even if a discontinuity or even sharp
peak existed, the experimental method would not show it. We therefore regard the peak in
the experimental results as consistent with the calculated discontinuity.
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Fig. 8. A comparison of Raman calculations of interfacial shear stress at an applied strain of 0.4%
to stress analysis predictions. The predictions are for a two zone model with D, = 5 MPa near the
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Fig. 9. The peak octahedral shear stress at the break between the two zones in a two-zone model
analysis is a function of the size of the damaged zone. The applied strain is 1.0%. D, = 5 MPa in
the damaged zone and D, = 300 MPa in the central portion of the fiber. The dashed line shows that
the peak octahedral shear stress for the observed damage zone size of 42 fiber diameters when

E = 1.0% is 48 MPa.

A calculation of interfacial octahedral shear stress for the high-strain results suggests
a mechanism for the interfacial damage. The octahedral shear stress is low in the damaged
zone but increases to a peak at the transition from the damaged zone to the undamaged
zone. Figure 9 plots the magnitude of the peak in the octahedral shear stress as a function
of the damage zone size for an applied strain of 1.0%. We note that except for very short
damage zones, the peak at 'oct occurs away from the fiber break and thus can be calculated
without convergence problems. As the damage zone gets larger, the peak in 'oct decreases.
For the fits in Figs 6 and 8, we calculated the damage zone size to be 42 fiber diameters.
The peak 'oct for this damage zone size is 48 MPa (see Fig. 9). By a von Mises yield criterion,
this 'oct corresponds to an interfacial tensile yield stress of 100 MPa or a shear yield stress
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of 58 MPa. These are reasonable values for the yield strength of this epoxy matrix. We
suggest that the damage zone in these samples was caused by matrix yielding at the
fiber/matrix interface. We examined Raman data for other applied strains and found that
all could be predicted with a two-zone model. Furthermore, the damage zone size in all
experiments was well predicted by a criterion that the maximum 'oct at the break between
the two zones is equal to 48 MPa.

Strain energy
We anticipate future work on the fragmentation test being based in fracture mechanics

and energy release rate rather than in stress criteria such as interfacial shear stress. The
stress state in this paper can be used in fracture mechanics calculations, but first we must
integrate the strain energy to get the total strain energy in a fragment with an imperfect
interface. The total strain energy in a fiber/matrix fragment is

(98)

(99)

For now, we treat the perturbation stress, (Jp, as the exact solution to the problem in Fig.
2C. The first term in eqn (99) is the energy due to the far-field stresses. Because of the
infinite volume it will be infinite. When these results are used in a fracture mechanics
analysis to evaluate energy release rates, the constant infinite term will drop out. We
therefore do not need to evaluate it and simply label it as pUo-a constant term that scales
with p.

The second term in eqn (99) can be evaluated using virtual work. We consider the far
field stresses as having boundary conditions of W2 constant on the ends of the matrix and
(In,2 = l/JYJ on the ends of the fiber. The perturbation stresses then define a virtual dis
placement field from the far-field displacements. Thus, by virtual work:

(100)

where Sf is the fiber cross-sectional surface on the top of the fiber. Converting to dimen
sionless coordinates we get

(101)

We split the last term in eqn (99) into integrals over the fiber volume and the matrix
volume:

Using the divergence theorem we can convert these volume integrals to surface integrals
giving

(103)

where Tp,i and up,i are the exact tractions and displacements due to the exact perturbation
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stresses. The only surfaces that contribute nonzero terms are the top and bottom cross
sections of the fiber and the interfacial surface. The interfacial surface contributes to both
the fiber integral and the matrix integral. Evaluating these nonzero terms, doing the hoop
integrations, and converting to dimensionless coordinates gives

where we have assumed the radial displacement discontinuity at the interface is zero
([u] = 0).

Combining all terms in eqn (99), using the exact result of (Tzz,I(P) = -1, and sub
stituting the imperfect interface condition for [w], the total strain energy in a fiber/matrix
fragment reduces to

(105)

This equation is an exact expression of strain energy in a fiber/matrix fragment. The first
integral is a crack closure integral over the fiber fracture surface. The crack-opening
displacement (ljJ;x)rlwl(p)) is multiplied by the crack-closure force (ndljJ;x)) and integrated
over the fracture surface. The second integral is a closure integral for the imperfect interface
effect. If the interface is perfect, this term is ignored. Because an imperfect interface allows
the system to slip the total energy is reduced by an imperfect interface.

To evaluate the strain energy using the stress analysis in this paper, we substitute the
crack-opening displacement (WI (p), see eqn (82)) and the interfacial shear stress (',z,2(1),
see eqn (48)) into eqn (105) and integrate. The result is

U( ) = [u - 3./,2 (B3 (P)(1-V T ) + S(P))]
P P 0 nr I 'I' 00 4G D

T s

where B3(p) is the B3 constant calculated for a fragment of aspect ratio P and

(106)

S(p) = i~1 [a~iKi(kJ - 2aOiali(2(1- vm)Ki (ki) -kiKo(kJK I (kJ)

+aL(2(I-vm)K I (kJ-kiK o(kJ)2J (107)

The constants in S(p) (aOi and all) are for a fragment of aspect ratio p. Both B3 and S(p)
converge as the number of terms in the fiber series increases. The required number of terms
is typically ~ 4p terms. Because we used the interfacial shear stress in the matrix, the result
for isotropic fibers is identical except that V T and GT should be replaced by vI and G1.

For an example energy release rate calculation, imagine a fiber fracture event occurring
at the middle of a fiber fragment originally of axial ratio p. Because the infinite matrix
prevents any external work during the fracture event, the total energy release rate associated
with the fiber break is

!:J.G= - !:J.U = r .1,2 [(1-VT )(B (/2)-B ())+ S(P/2)-S(P)].
2 p I 'I' eYe 4G 3 P 3 P D

nr l T s

(108)

Note that the infinite terms cancel as expected and !:J.G is a well-defined, finite quantity.
Some recent experimental fragmentation results for glass fibers in an epoxy matrix show
that fiber fracture events do not occur in isolation. Rather, excess energy released by the
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fiber break causes fiber matrix debonding (Wagner et al. (1995)). Our suggested analysis
approach for fiber fracture and debonding data is to incorporate a debond zone into the
analysis, perhaps using a two-zone model with D, = 0 in the damaged zone, and then to
calculate the total energy released for fiber fracture and debonding. We postulate that
fragmentation data giving debond size can be interpreted in terms of critical energy release
rates for fiber fracture and interfacial fracture. The results in Wagner et al. (1995) support
this postulate. An energy analysis using the Bessel-Fourier series stress function will be the
subject of future work.
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